中考热点十三三角形与四边形中的计算一选填题
专项突破5 翻折
1.如图,在菱形中,,点在边上,且是边上一动点,将沿直线折叠,点落在点处,当点在四边形内部(含边界)时,的取值范围是________.
2.在中,是边上一点,将沿翻折得到,连接,若,则的长为________.
3.如图,在矩形中,分别是边上的动点,将矩形沿折叠,点的对应点总落在边上,则长度的取值范围是________.
4.如图,对折矩形纸片使与重合,得到折痕,再把纸片展平.是上一点,将沿折叠,使点的对应点落在上,连接并延长交于点.已知,则的值是________.
专项突破6 平移
1.如图,在四边形中,分别为的中点,,若∥,则的长为________.
2.如图,线段交于点,则的长为________.
3.如图,在中,分别是边上的点,连接交于点,且,若,则的长为________.
4.如图,正方形中,是上一点,是延长线上一点,.点分别在边上,且交于,若,则的长为________.
5.如图,在Rt中,分别在上,连接交于点.若,则的值是________.
专项突破5翻折
1.解:当点落在边上时,延长交的延长线于点,过点作于点,由翻折得可求,
,,
当点落在边上时,.
2.7或解:当点在四边形内部时,过点作于点,交于点,过点作于点,连接,
,
,设,
在Rt中,;
同理当点在四边形外部时,,综上所述,或.
3.解:当点与点重合时,最小,其值为;
当点与点重合时,最大,
设此时的,则,
在Rt中,,
.
4.解:由翻折得,
设,在Rt中,,四边形是矩形,
,
,
.
专项突破6平移
1.解:过点分别作交于点交于点,延长至点,使,
连接.可得,
,
解,得,
.
2.解:作,连接,
,
,
,
,
.
3.解:过点作,与过点平行于的直线交于点,连接,过点作交的延长线于点,
四边形为平行四边形,,
为等边三角形,,
,
.
4.解:连,
是等腰直角三角形,
,
,
为平行四边形,
,
.
5.解:过点作,使得,连接,
四边形为平行四边形,,
,
,
,
设,则.
()
转载请注明出处高中试卷答案网 » 【中考冲刺复习训练】热点十三 三角形与四边形中的计算一选填题 专项突破5-6(含答案)